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1 – INTRODUZIONE 

Quando penso alla posizione della matematica nella società mi 
sembra di trovarmi in un mondo contraddittorio. 

Da una parte mi sembra di vedere la matematica come una giovane 
e bella donzella ricercata, riverita, in  pieno vigore fisico e 
spirituale. Mi suggeriscono questa idea 

1.1 -  L’aumento continuo dei “clienti” della matematica, cioè delle 
discipline che fanno appello alla matematica per le loro necessità 
interne. Ne è una testimonianza il  volume “Le scienze 

matematiche” curato dall’UMI e pubblicato da Zanichelli nel 1973, 
come pure il recente volumetto, sempre curato dall’UMI, intitolato 
“L’esplosione della matematica”. Nella quarta di copertina si 
legge: “Ma è negli ultimi trent’anni che stiamo assistendo ad una 
vera e propria esplosione del numero dei campi di attività umane 
nei quali la ricerca matematica, particolarmente la più avanzata, si è 
rivelata indispensabile”. 
1.2 - La continua pubblicazione di libri e riviste di contenuto 
matematico. Per i libri non mi riferisco, ovviamente, ai libri di 
testo, e neppure a libri specialistici, ma a libri di carattere generale, 
di divulgazione matematica destinati ad un pubblico vasto al di 
fuori della scuola. Negli ultimi anni, in Italia, ne sono usciti alcune 
centinaia. Per la matematica ricreativa, la letteratura è sterminata. Il 
nome di Martin Gardner è noto a tutti. Per gli articoli verrebbe 
quasi voglia di gridare “si salvi chi può”. Il Mathematical Reviews 
che cerca di recensire gli articoli pubblicati sulle riviste 
matematiche più importanti, è un mensile, ogni numero consta di 



circa 1 000 pagine ed è sempre in ritardo di circa un anno nel 
recensire le pubblicazioni. 
1.3 - Il numero impressionante di congressi, convegni, seminari, 
scuole estive dedicati ai più svariati argomenti matematici nei più 
diversi paesi del mondo. 
1.4 - I premi che vengono assegnati ai matematici. E’ vero, non c’è 
un premio Nobel per la matematica, ma oltre alla medaglia Fields, 
il più antico premio matematico, ora ci sono anche il premio Abel e 
il premio Fermat. In Italia abbiamo il premio Peano. 
1.5 - Infine, le gare matematiche per tutti i livelli e per tutte le età. 
 
C’è, però, anche l’altra faccia della medaglia nella quale la 
matematica appare come una brutta e malefica strega generatrice di 
ricordi tristi e di ripulse decise. Me lo fanno pensare 
1.6 - Il fatto che la matematica, che si studia in tutti i livelli scolari, 
è, fra tutte le discipline, la più detestata. La si studia per poter 
essere promossi, ma se ne farebbe volentieri a meno. 
1.7 - Il fatto che la matematica incute timore, suscita paura, genera 
ansia. Questi sentimenti devono essere molto diffusi, anche fuori 
della scuola. Basti pensare al successo editoriale, negli Stati Uniti, 
del volume della Sheila Tobias, “Overcoming Math Anxiety”. 
Tradotto in italiano e pubblicato da Longanesi con il titolo “Come 

vincere la paura della matematica”, ha avuto due edizioni tra 
settembre 1994 e marzo 1995. Dal “terrore” della matematica, sia 
pure per scoprirne gli aspetti umani, parte Anne Siety nel suo 
volume “Matematica, mio terrore. Alla scoperta del lato umano 

della matematica” pubblicato da Salani nel 2003. Successo e 
recensioni favorevoli ha avuto anche il volume del fisico Giovanni 
Filocamo “Mai più paura della matematica. Come fare pace con 

numeri e formule” pubblicato da Kowalski nel 2009. 
1.8 - Il fatto che la matematica non è considerata come una realtà 
culturale e la sua ignoranza non è sentita come un deficit   ma quasi 
come un fatto positivo. Questo atteggiamento non è solo dei nostri 
giorni. Già quarant’anni fa Beniamino Segre (1903 – 1977) 



lamentava “l’atteggiamento di troppe persone che si ritengono 

colte anche se mancano dei più elementari rudimenti della 

matematica, e che di tali loro lacune – anziché preoccuparsi – 

quasi traggono vanto e compiacimento” (Segre, 1967, pag. 2). Né 
questo è solo un fatto italiano come sottolinea Morris Kline a 
proposito degli Stati Uniti : “Le persone istruite rifiutano quasi 

universalmente la matematica come oggetto di interesse 

intellettuale. […] La conseguenza è che un argomento 

fondamentale, di vitale importanza e tale da elevare lo spirito, 

viene trascurato e disprezzato da persone peraltro di buon livello 

intellettuale. Di fatto l’ignoranza della matematica viene 

considerata, a un certo livello della scala sociale, un fatto positivo” 
(Kline, 1976, pag. 9 – 10). 
1.9 - La fuga dei giovani dalla matematica. Intendo dire che il 
numero delle matricole dei corsi di laurea in matematica è sempre 
molto piccolo. Forse è cessata la vertiginosa discesa delle 
immatricolazioni cui abbiamo assistito fino a cinque anni fa; forse è 
iniziata una lenta, molto lenta, ripresa anche come effetto del 
“Progetto Lauree scientifiche”, ma i numeri con cui si parte sono 
sempre  molto piccoli; immaginatevi quelli con cui si arriva alla 
laurea specialistica (o magistrale). 
 
Davanti a questa situazione contraddittoria, anzi, immersi in essa, 
che cosa fare? La subiamo convinti che il problema è troppo grande 
per noi, che è superiore alle nostre forze? Ci piangiamo addosso 
inveendo contro il destino cinico e baro che ci sta trasformando in 
una “razza protetta” dal WWF perché in pericolo di estinzione? 
Oppure cerchiamo di reagire, di trovare qualche via d’uscita da 
questo quadro contraddittorio? Forse non riusciremo 
completamente nel nostro intento, forse ci rimarrà dell’amaro in 
bocca, ma non avremo speso inutilmente il nostro tempo e non 
saremo venuti meno alle nostre convinzioni in forza delle quali 
oggi ci troviamo qui in un Seminario di matematica. 
 



Io cerco di reagire così come ne sono capace. Sono ben 
consapevole delle difficoltà del mio compito e del grosso rischio di 
un fallimento. 
Questa giornata è dedicata al “divertirsi”. Noi docenti pensiamo 
sempre ai divertimento che dovrebbero provare gli alunni nello 
studiare la matematica e mai al nostro divertimento nell’insegnare 
la matematica. Nel titolo di questa conferenza ho messo professori 
e studenti e per ambedue ho parlato di una gioia che nasce 
dall’impegno. Non so se riuscirò nell’intento. Accetto, comunque, 
il rischio del fallimento. 
 
Prima di proporre alla vostra meditazione alcune mie riflessioni 
vorrei dire che in questa attività di “Divertirci e divertire… 
insegnando e studiando matematica” abbiamo alcuni alleati, alcuni 
punti di forza, ma anche alcuni nemici, alcuni punti di debolezza. 
 
Tra gli alleati possiamo annoverare la vasta letteratura sui 
“Divertimenti matematici” (è il titolo di un libretto di Glenn e 
Johnson pubblicato da Zanichelli nel 1965). E’ una letteratura 
indirizzata ad un pubblico vasto, vario che compera (altrimenti non 
si stamperebbero i libri) e si diverte (altrimenti non comprerebbe). 
Anche se spesso i giochi proposti sono suddivisi in “Giochi di 
aritmetica,… di algebra, …di geometria” (si veda il classico 
“Matematica dilettevole e curiosa” di Italo Ghersi, Hoepli), 
tuttavia questi volumi non sono scritti apposta per insegnanti e 
indirizzati alla loro attività in classe. 
Ci sono, però, almeno due pubblicazioni per insegnanti. 
 
La prima è di un matematico illustre verso il quale la didattica della 
matematica ha un debito notevole: Giuseppe Peano, Giochi di 

aritmetica e problemi interessanti. 
La prima edizione ( di Paravia) è del 1924, l’ultima (di Sansoni) del 
1983. Questo volumetto è esplicitamente indirizzato agli insegnanti 
elementari. Nella prima pagina Peano scrive: “In tutti i tempi, e 



presso tutti i popoli, si insegnavano dei giochi per rendere 
dilettevole o meno noiosa l’aritmetica. Saggiamente questi giochi si 
trovano nei nuovi programmi delle scuole elementari. Credo far 
cosa utile agli insegnanti col pubblicarne alcuni.” 
 
La seconda è di un matematico meno noto di Peano, ma comunque 
notevole, come Michele Cipolla. Nella  “Enciclopedia delle 

matematiche elementari e complementi” a cura di L. Berzolari, 
Cipolla (Cipolla, 1983) ha scritto un lungo articolo su “Matematica 

ricreativa”. Questa enciclopedia era stata progettata dalla Mathesis 
Nazionale nel 1909 per la formazione continua dei docenti di 
matematica. La presenza dell’articolo di Cipolla ci dice della 
convinzione, allora diffusa, che la conoscenza della matematica 
ricreativa doveva far parte della cultura e dell’armamentario 
professionale di un docente di matematica. 
 
Tra i punti di debolezza dobbiamo certamente annoverare un certo 
modo di pensare la matematica.  
La matematica, si pensa e si dice, è una disciplina seria il cui 
studio, ad ogni livello, richiede sforzo, impegno, sacrificio, sudore, 
se non proprio lacrime. Non c’è posto, quindi, per il gioco, per il 
divertimento, per la leggerezza. 
Un altro punto di debolezza è la nostra formazione culturale, anche, 
e soprattutto, quella impartita all’università. Io ho impiegato 6 anni 
per laurearmi in matematica (ero uno studente lavoratore), 
frequentando due diverse università. Mai mi è stato proposto un 
gioco matematico, mai mi è stato parlato di giochi matematici 
divertenti ed istruttivi, mai ho avuto indicazioni bibliografiche 
relative alla “matematica divertente”. 
Un terzo punto debole è il nostro tradizionale insegnamento della 
matematica. Ha ragione Martin Gardner quando scrive, nella 
Introduzione del vol. 5° di “Enigmi e giochi matematici” , Sansoni 
1980: “La matematica non è mai stato un soggetto arido, sebbene 
sia stata troppo spesso insegnata nel modo più arido possibile.” 



 
Dopo tutte queste premesse, posso iniziare a proporvi le mie 
riflessioni. Per qualcuno esse avranno il sapore della novità, per 
altri, invece, saranno cose notissime. A questi domando scusa fin 
da ora.   
Cercherò di organizzare le mie riflessioni attorno a quattro verbi: 
DEFINIRE – PARLARE - DIMOSTRARE – GIOCARE. 

 
 
2 – DEFINIRE 

 
Il definire è una attività pressoché sconosciuta nella vita quotidiana 
perché gli “oggetti” di cui parliamo sono sufficientemente 
individuati da un gesto, dall’esperienza che ne abbiamo, dal senso 
comune. 
In discorsi un po’ impegnativi può essere necessario precisare il 
senso di una parola, darne una definizione in modo da non usarla 
con significati diversi. Si incomincia a sperimentare, in questo 
caso, la “fatica del definire”. 
In matematica si presentano situazioni nuove e decisamente più 
pesanti. 
La prima novità, non solo rispetto alle conversazioni quotidiane, 
ma anche rispetto a quello che succede nelle altre discipline, è che i 
libri di testo, dalle elementari all’università, sia pure in misura 
diversa, sono ricchi di definizioni. In genere esse sono messe bene 
in risalto dal punto di vista tipografico, incorniciandole e 
colorandole. Spesso si usa anche una “liturgia linguistica” con le 
tipiche parole: “dicesi”, “definiamo”, “chiamiamo” e simili. 
Altre volte, sopratutto nella scuola elementare, le definizioni sono 
meno solenni, sono di “tipo narrativo” nel senso che si descrivono, 
senza necessariamente usare parole tecniche, gli oggetti che si 
vogliono presentare. 
Stante questa presenza massiccia delle definizioni nello studio della 
matematica ci si può porre il problema: qual è il significato 



etimologico della parola “definizione”? Qui entra in gioco il latino. 
Si tratta di porre dei confini, di piantare dei paletti, di fare delle 
delimitazioni. Non sarà male consultare, con i ragazzi, un 
vocabolario di italiano. Il “Dizionario di matematica elementare” 
della Stella Baruk (Baruk,1988) dedica diverse colonne alla 
“definizione”. 
Trattandosi di matematica è bene ricorrere al padre Euclide. Egli 
inizia il primo libro dei suoi Elementi con il termine “όροι”. Acerbi 
(Acerbi, 2007) lo traduce con “Termini”, come del resto Enriques 
(Enriques 1925) il quale nota che si può anche tradurre con 
“concetti” o “definizioni”. Frajese e Maccioni (Frajese – Maccioni, 
1970) traducono con “definizioni”. 
Questa potrebbe essere una buona occasione, per docenti e studenti, 
per accostarsi al più classico libro della letteratura matematica. 
Il gioco della ricerca del significato etimologico delle parole molto 
usate in matematica potrebbe continuare, per esempio, con la 
parola “geometria”. Io l’ho fatto molte volte con i miei studenti 
universitari e con i docenti che partecipavano a corsi di 
aggiornamento. Tutti, ma proprio tutti, sapevano che “geometria” 
significa “misura della terra” anche se la geometria che noi 
studiamo non ha niente a che fare con la misura della terra. 
Ho continuato il gioco con la parola “aritmetica”. La risposta corale 
è sempre stato un silenzio imbarazzato, anche dai laureati in 
matematica. I Greci chiamavano “aritmetica” (dal vocabolo 
arithmos, numero) quella che per noi è la “teoria dei numeri”, cioè 
la contemplazione dei numeri, delle loro proprietà, dei rapporti 
reciproci e non dei numeri che servivano per i calcoli di tipo 
commerciale (questa era la “Logistica”). 
Il gioco può continuare con una parola molto usata in matematica 
dalla scuola media in poi: “teorema”. Quando l’ho fatto, qualche 
risposta, di gente che aveva alle spalle il liceo classico, la collegava 
con Dio (theos in greco), collegamento sbagliato. Teorema deriva 
da “theorein” che significa “ contemplare” e sottolinea la 
dimensione contemplativa della matematica. Mi domando: è 



proprio necessario, per giustificare lo studio della matematica, che 
andiamo sempre alla ricerca delle sue applicazioni? A me vengono 
in mente le parole che C.G.J. Jacobi scriveva a Legendre il 3 luglio 
1830: “Fourier era del parere che lo scopo principale della 
matematica fosse l’utilità sociale e la spiegazione dei fenomeni 
naturali; un filosofo come lui tuttavia avrebbe dovuto sapere che 
l’unico fine della scienza è l’onore dello spirito umano, e che, da 
questo punto di vista, un problema relativo ai numeri ha la stessa 
portata di un problema che riguarda il sistema del  mondo.” 
Forse, però, sono un illuso. 
Il nostro vocabolario matematico non deriva tutto dal greco: sono 
presenti anche gli Arabi. Io credo che se ci mettiamo a giocare con 
i nostri alunni e, forse, anche con i nostri colleghi, con la parola 
“algebra”, avremmo delle sorprese. La sua origine araba ed il suo 
significato di “restaurazione” li troviamo anche sui vocabolari di 
italiano. Stessa origine ha la parola “algoritmo”. Il punto di 
partenza è un nome proprio “Al-Khuwarizmi” autore di un trattato 
di algebra. Latinizzato in “algorismus” è diventato “algoritmo” e il 
suo significato attuale non ha nessun rapporto con il matematico da 
cui deriva. 
Una trafila un po’ più lunga ha seguito la nostra parola “zero”. 
Partendo dall’arabo “sifr” è diventato “zephirum” in latino, poi 
“zeuero” ed infine “zero” in italiano. 
Questi brevi cenni ci danno l’occasione di sottolineare in classe il 
nostro debito culturale non solo verso i Greci, ma anche verso gli 
Arabi e, attraverso gli Arabi, verso Indiani.  
 
Ritorniamo al definire. Una novità sconvolgente, rispetto a tutte le 
altre discipline, è che in matematica non possiamo definire tutto. 
Questa affermazione è ovvia per un laureato in matematica, ma può 
risultare abbastanza incomprensibile per gli altri. Perché  non 
possiamo definire tutto? Quando noi diamo una definizione la 
nostra aspirazione è che sia sensata e comprensibile. Per questo 
dobbiamo usare delle parole il cui significato sia già noto ai nostri 



interlocutori. Il che è come dire che di queste parole dobbiamo aver 
già dato una definizione sensata e comprensibile. E il processo 
continua. Se vogliamo evitare di fare un “circolo vizioso” che non 
ci consente di dare nessuna definizione e se vogliamo evitare quello 
che si chiama un “regresso all’infinito” per cui al momento del 
giudizio universale stiamo ancora tentando di dare la definizione di 
un certo “oggetto” matematico, dobbiamo per forza scegliere 
alcune parole, alcuni termini senza darne nessuna definizione. 
Questi vocaboli vengono chiamati “termini primitivi” o “ concetti 
primitivi”. 
Tre i problemi che nascono. 
 
Il primo: che ce ne facciamo dei termini primitivi? Semplice: li 
usiamo per dare definizioni. Esempio: se in geometria scegliamo 
come termini primitivi quello di punto e di retta, possiamo subito 
definire il triangolo: una terna di punti non allineati. 
 
Il secondo: con quali criteri scegliamo i termini primitivi? Qui il 
discorso è più difficile se non altro perché storicamente i 
matematici si sono ispirati a criteri diversi. Gli antichi, da 
Aristotele alla fine del secolo XIX, hanno scelto come criterio la 
semplicità, la evidenza dei concetti; i moderni, da Hilbert in poi, 
senza scartare a priori la semplicità, hanno fatto appello alla libertà 
del matematico, alla forza dei concetti, alla loro comodità. 
 
Il terzo: anche in matematica si creano delle nicchie di privilegio, 
delle rendite di posizione con concetti di serie A (quelli primitivi) e 
concetti di serie B (quelli definiti)? No di certo! I concetti primitivi 
non sono tali per diritto divino e non sono tali per tutti. Essi sono 
soggetti, nella concezione moderna della assiomatica, alla libera 
scelta del matematico. Matematici diversi possono scegliere 
concetti primitivi diversi per la stessa teoria. Inoltre a quelli scelti si 
impongono “regole di comportamento” ferree, cioè devono 
ubbidire a quelle proposizioni che chiamiamo “assiomi”. 



 
Questi discorsi sono certamente per gli insegnanti, Essi potrebbero 
“divertirsi” con qualche piccola ricerca. 
Per esempio, in Euclide non c’è l’espressione “termini primitivi”. 
Essi mancano veramente? Le definizioni di Euclide sono tutte 
“sensate e comprensibili”? 
Confrontare libri di testo diversi (di geometria per il biennio delle 
superiori) per vedere quali concetti primitivi scelgono e come li 
giustificano. Si può anche risalire ad esposizioni classiche come 
quelle di Peano e di Hilbert. 
 
Ci sono termini primitivi in aritmetica? Verrebbe voglia di dire di 
si visto che i programmi Brocca, PNI, e le Indicazioni Nazionali 
per  il Liceo  Scientifico della “riforma Gelmini” parlano di 
approfondire la comprensione del sistema assiomatico portando 
come esempio anche il “contesto dell’aritmetica”. Se ne trova 
traccia nei libri di testo prima del quinto anno? Perché? Anche per 
l’aritmetica c’è la libertà che si riscontra nella geometria? 
 
Di queste “scoperte” che l’insegnante può fare, che cosa si può 
portare in classe? E’ conveniente farlo? 
 
Comunque si risponda a queste domande è certo che in classe, a 
qualunque livello, dobbiamo presentare delle definizioni. Gli 
insegnanti, e di conseguenza anche gli alunni, si devono sottoporre 
a due fatiche: 
“La fatica dell’attenzione”: in una definizione devono essere 
presenti tutti gli elementi che sono indispensabili per tracciare 
“l’identikit” dell’oggetto che vogliamo definire: 
“La  fatica dell’economia”: in una definizione non dobbiamo dire 
niente di più di ciò che è indispensabile, va esclusa ogni 
ridondanza. 



Con una frase un po’ ad effetto, possiamo dire che in matematica 
“il definire è l’arte di misurare le parole, di dire tutto e solo ciò 

che serve”. 
A me sembra che questo sia un messaggio da trasmettere 
esplicitamente agli studenti per aiutarli ad evitare il pressapochismo 
come anche la inutile logorrea. 
 
Una volta accettato di procedere in questo modo nel dare 
definizioni, ci si può divertire, docenti e studenti, ad esaminare le 
definizioni che  via via si incontrano nel libro di testo. 
Per esempio, in un libro di testo per la scuola media ho trovato 
questa definizione scritta in grassetto e incorniciata in un rettangolo 
azzurro: “ Un numero naturale si dice primo se è divisibile solo 

per se stesso e per 1, altrimenti si dice composto.” 
La definizione è corredata dalle seguenti Osservazioni: 

• I numeri pari non sono primi tranne 2 
• 1 non è considerato primo per convenzione 
• I numeri primi sono infiniti. 

 
Questa definizione opera una partizione nel mondo dei numeri 
naturali. Il numero 0 dove lo mettiamo? Non è un numero primo, 
almeno per la prima osservazione fatta; non è un numero composto 
perché non scomponibile nel prodotto di fattori primi. Quindi non è 
né primo né composto, ma la definizione non dà questa possibilità. 
L’osservazione sul numero 1 è una perla: esso è primo per la 
definizione, ma non è primo per convenzione, come se la 
definizione non fosse una convenzione. 
Si tratta, quindi, di una definizione “deficiente” nel senso che non 
c’è tutto quello che serve. Basta poco per sistemarla. Basterebbe 
dire: “Un numero naturale maggiore di 1…” e così si fa nascere 
una partizione con tre mondi diversi: primi, composti, né primi né 
composti (0 e 1). Si possono trovare altre sistemazioni che non 
fanno appello alla relazione di ordine e così studenti e professori 
esercitano le loro capacità critiche. 



 
Altre definizioni sono decisamente sovrabbondanti come la 
seguente: “ Si dice quadrato ogni parallelogramma avente tutti e 
quattro gli angoli retti e tutti e quattro i lati uguali” Avendo già 
descritto e dimostrato le proprietà dei parallelogrammi, bastava 
molto meno. 
 
Io sono convinto che nel dare definizioni noi possiamo trovare 
gioia, soddisfazione, divertimento. Potrei esprimere tutto con una 
specie di slogan provocatorio: “Definire in matematica: 

l’ebbrezza della libertà”. 

Il mondo delle definizioni è il mondo della fantasia e della libertà 
ed è una delle manifestazioni della verità della affermazione di 
Cantor: «L’essenza della matematica è la sua libertà». Provare una 
sensazione di libertà in una disciplina che tutti, o quasi, ritengono 
dogmatica e rigida, procura una soddisfazione inebriante. 
 
Abbiamo libertà rispetto al passato anche se venerando ed 
autorevole. Parlando del passato è naturale rifarsi al nostro padre 
Euclide. Egli apre il primo libro dei suoi Elementi con 23 
definizioni. La penultima ci presenta un mondo a noi molto 
famigliare: quello dei quadrilateri o delle “figure quadrilatere” 
come le chiama Euclide. Ecco la definizione: «Delle figure 

quadrilatere, è quadrato quella che è insieme equilatera ed ha gli 

angoli retti, rettangolo quella che ha gli angoli retti, ma non è 

equilatera, rombo quella che è equilatera, ma non ha gli angoli 

retti, romboide quella che ha i lati e gli angoli opposti uguali fra 

loro, ma non è equilatera né ha gli angoli retti. E le figure 

quadrilatere oltre a queste si chiamano trapezi». 

Degli stessi quadrilateri noi diamo definizioni abbastanza diverse. 
Anzitutto noi facciamo ricorso massiccio al parallelismo dei lati 
opposti dato che prima, nei libri di testo, è stata introdotta la 



nozione di rette parallele. Euclide non fa intervenire il parallelismo 
fra rette perché lo introduce nella definizione 23. 

Con la sua definizione Euclide introduce una partizione nel mondo 
dei quadrilateri, forse perché la riteneva più facile da memorizzare 
o, forse, perché la riteneva didatticamente più efficace. Con le 
definizioni che noi diamo di solito non operiamo una partizione nel 
mondo dei quadrilateri, ma, seguendo un atteggiamento tipico della 
matematica moderna, cerchiamo di partire da una classe molto 
generale ed individuare al suo interno sottoclassi significative. 

Una differenza molto vistosa riguarda i trapezi. I nostri trapezi         
(definiti facendo intervenire una coppia di lati paralleli) lo sono 
anche per Euclide, ma non vale il viceversa. 

Qualcuno potrebbe dire che è normale rivendicare questa libertà di 
definizione rispetto al passato dato che da Euclide ad oggi ne è 
passata di acqua sotto i ponti. E’ vero, ma la stessa libertà noi 
possiamo rivendicare ed esercitare anche rispetto al presente. Ecco 
qualche esempio che può aiutarci ad assumere questo 
atteggiamento nelle attività nelle nostre classi. 

Le definizioni di numero pari.  
La definizione più accreditata è la seguente: un numero è pari 

quando è divisibile per 2. La si trova anche sui vocabolari di 
italiano. 
E’ una definizione tradizionale già presente in Euclide (def. 6 del 
libro VII) e si presta bene a fare un breve diagramma di flusso per 
saggiare se un numero è pari o no. 
Possiamo certamente darla in quarta elementare o anche alla fine 
della terza quando gli alunni hanno acquisito un po’ di 
dimestichezza con la divisione. Lo strumento concettuale di cui 
abbiamo bisogno è la divisione. Possiamo ritenerlo uno strumento 
troppo raffinato o troppo difficile per parlare di numeri pari. Allora 
possiamo ricorrere ad una operazione più semplice: la 



moltiplicazione dicendo che un numero è pari quando è multiplo di 

2. La possiamo enunciare alla fine della seconda elementare o 
all’inizio della terza. 
E se volessimo presentare i numeri pari in prima elementare?  
Nessun problema.  Giocando con i numeri amici rispetto 
all’addizione i bambini possono scoprire che alcuni numeri sono 
somma di due numeri uguali.  Questi numeri sono pari. 

Tre definizioni diverse perché fanno intervenire strumenti 
concettuali diversi, ma logicamente equivalenti. 
Quale delle tre è preferibile? 
Dipende dai gusti dell’insegnante, dagli strumenti concettuali che 
ha a disposizione e, quindi, dalla classe. 
Personalmente preferisco la terza per i seguenti motivi: 
• si può scoprire in un contesto di gioco; 
• richiede solo la conoscenza dell’addizione; 
• porta a scoprire subito che lo zero è un numero pari (0 = 0 + 0); 
• è la strada più breve per giungere alla rappresentazione 

generale dei numeri pari: 
p = n + n = 2n 

 
Le definizioni di numero primo. 
Se ne possono dare diverse, ma non tutte sono equivalenti. 
Nei libri di testo delle scuole medie spesso si trova la definizione: 
un numero naturale è primo se ha solo due divisori, uno e se 

stesso. 

Con questa definizione il numero 1 risulta essere un numero primo. 
Non siamo, però, obbligati a tenercelo fra i piedi anche perché 1 
canta fuori dal coro degli altri numeri primi. Per escluderlo basta 
poco. Per esempio, si può adottare la definizione: un numero 

naturale è primo quando è maggiore di 1 ed ha come divisori solo 

1 e se stesso. Questa è, sostanzialmente, la definizione 11 del libro 
VII degli Elementi di Euclide. In classe si potrebbe illustrare 
l’atteggiamento di Euclide, non sempre coerente. Per Euclide, un 
numero è divisore di un altro numero quando è minore di questo 



(definizione 3). Quindi nessun  numero divide se stesso. Questa è 
l’ufficialità della definizione. Quando, però, ad Euclide fa comodo 
(proposizione 2 del libro VII) considera un numero divisore di se 
stesso. La scelta definitoria di Euclide è in vista dei numeri perfetti 
che rappresentano il top dei libri aritmetici degli Elementi. 

Se ci da fastidio l’intervento della relazione di ordine, possiamo 
lasciarla in pace e dire che: un numero naturale è primo se ha 

esattamente due divisori diversi. Ovviamente 1 non è primo. 

In tutte queste definizioni abbiamo fatto entrare in gioco la 
divisione. Non è necessario; possiamo accontentarci della 
moltiplicazione dicendo che: un numero naturale è primo se è 

multiplo solo di due numeri diversi, cioè se stesso e l’unità. 
Ovviamente 1 resta fuori dal giro e questa definizione può essere 
facilmente letta sulla tabella della moltiplicazione. 

Questa “ebbrezza della libertà” nel dare definizioni possiamo 
gustarla anche in geometria. 

Possiamo incominciare con i parallelogrammi. La grande famiglia 
viene definita attraverso il parallelismo dei lati opposti. Le diverse 
sottofamiglie sono caratterizzate facendo appello alla lunghezza dei 
lati ed alla ampiezza degli angoli. Ovviamente tutto ciò è lecito e 
deve essere anche efficace visto che fa parte di una lunga 
tradizione. Possiamo, però, rivendicare la nostra “libertà di 
definizione” e fare entrare in gioco le diagonali. Premessa la 
definizione di diagonale ed il fatto che un quadrilatero è convesso 
se e solo se le sue diagonali si tagliano in un punto interno, 
possiamo, allora definire: 

parallelogramma: un quadrilatero le cui diagonali si tagliano nel 

rispettivo punto medio (questo è l’elemento fisso);                                                                                                          
rettangolo: se le due diagonali sono uguali;  rombo: se le due 

diagonali sono perpendicolari; quadrato: se le due diagonali sono 

uguali e perpendicolari. 



Questa libertà di definizione può esplodere anche nel tracciare 
l’identikit di una singola figura. Tipico, da questo punto di vista, è 
il quadrato. Questa libertà, ovviamente, si basa sugli strumenti 
concettuali che abbiamo a disposizione e che vogliamo usare e 
sugli obiettivi che vogliamo raggiungere. 

Una prima definizione di quadrato è la seguente: quadrato è un 

quadrilatero regolare.  I poligoni regolari si incominciano a 
studiare nella scuola primaria con la definizione tradizionale: è 
regolare un poligono che ha i lati congruenti e gli angoli 
congruenti. In questa definizione di quadrato non interviene né il 
parallelismo dei lati opposti, né il fatto che gli angoli siano retti. E’, 
quindi, una definizione che vale anche in una geometria nella quale 
non esistono rette parallele e la somma degli angoli interni di un 
quadrilatero è maggiore di 4 retti (geometria ellittica) e in una 
geometria nella quale di rette parallele per un punto ad una retta 
data ne esistono più di una e, quindi, la somma degli angoli interni 
di un quadrilatero è minore di 4 retti (geometria iperbolica). 
Naturalmente la definizione vale anche in geometria euclidea nella 
quale, per via della unicità della parallela, la somma degli angoli 
interni di un quadrilatero vale 4 retti e, quindi, i quattro angoli 
uguali del quadrato sono retti. Quella riportata è la definizione più 
generale di quadrato. 

In classe potrebbe nascere questa difficoltà: come fanno i quattro 
angoli ad essere uguali senza essere retti? Se vogliamo convincere i 
nostri studenti con un disegno (e non è possibile fare 
diversamente), dobbiamo mandare a ramengo un tabù cui siamo 
tenacemente attaccati (per la nostra visione euclidea della 
geometria): i lati del quadrato non sono rettilinei. Pazienza! Non 
crolla la matematica, non crolla neppure la nostra cara e simpatica 
geometria euclidea. Semplicemente la matematica ha orizzonti più 
vasti di quelli cui noi siamo abituati. E perché non abituarci anche 
noi? 



Di tal fatta, se non tale appunto, è la stessa definizione di quadrato 
quando per poligono regolare di n lati si intende quello che ha n 
assi di simmetria. Il quadrato, quindi, è un quadrilatero che ha 4 

assi di simmetria. Siccome la simmetria assiale è una isometria 
(anche se diverse sono le sue definizioni nelle tre geometrie prima 
ricordate) si conclude subito che il quadrato ha 4 lati congruenti e 4 
angoli congruenti. 

Sempre partendo da un semplice quadrilatero possiamo definire 
quadrato un quadrilatero che ha la diagonali congruenti, 

perpendicolari e che si tagliano nel rispettivo punto medio. Anche 
questa definizione vale in tutte e tre le geometrie sopra ricordate. 

Possiamo partire dalla famiglia dei parallelogrammi. Essi sono 
tipiche figure della geometria euclidea, legate indissolubilmente 
alla unicità della parallela. Può essere interessante andare alla 
ricerca delle definizioni che rispettano il “principio di minimalità”, 
cioè quelle che richiedono il minimo per caratterizzare il quadrato. 
Per esempio, queste due:  un quadrato è un parallelogrammo con 

due lati consecutivi congruenti ed un angolo retto. E’ quadrato un 

parallelogrammo con le diagonali congruenti e perpendicolari. 

Se si parte dai rettangoli basta richiedere che due lati consecutivi 

siano uguali oppure che le diagonali siano perpendicolari. 

Analogamente, se si parte dai rombi basta richiedere che il rombo 
abbia un angolo retto, oppure che le diagonali siano uguali. 

Naturalmente si può andare alla ricerca di nuove definizioni di 
quadrato e vedere se sono vere definizioni, cioè dicono tutto e solo 
l’indispensabile, vedere se sono equivalenti a qualcuna delle 
definizioni proposte e perché. 

Per esempio, si può dire che un quadrilatero è un quadrato se esiste 
una rotazione che trasforma ogni vertice nel successivo? Perché?   



Si può dire che un quadrilatero è un quadrato se ha tre lati 
congruenti e due angoli retti? 

In questa attività tipicamente matematica del definire l’impegno per 
la scelta delle condizioni necessarie e sufficienti e la gioia del 
gustare la libertà di scelta sono inscindibili. Meglio: possono essere 
inscindibili se il docente vi si orienta. E orientarsi in tal senso 
conviene a tutti: ai docenti, agli studenti e alla matematica. 

 

3 – PARLARE 

Il linguaggio ha una funzione sociale insostituibile. Noi impariamo 
a parlare fin da piccoli e, in generale, non ci costa fatica parlare 
nella lingua quotidiana. L’uso di un linguaggio sorvegliato, pulito e 
corretto, però, si rivela faticoso a giudicare da quanto si sente in 
tante conversazioni e alla televisione e da quanto si legge anche in 
giornali seri. 
Anche la matematica ha un suo linguaggio, anzi vi è chi sostiene 
che essa è essenzialmente un linguaggio. 

Noi siamo abituati al linguaggio matematico di adesso. 
Incominciamo ad incontrarlo e ad usarlo dalla prima elementare e, 
in modo inconsapevole, maturiamo la convinzione che è sempre 
stato usato questo linguaggio. Si tratta di un linguaggio fatto 
prevalentemente di simboli: basta osservare un qualunque libro di 
testo, soprattutto nella parte dedicata agli esercizi. 

La realtà è molto diversa. Il linguaggio matematico ha una storia 
lunghissima, multimillenaria, è passato attraverso varie fasi che si 
sovrapponevano fra di loro e continua anche ora il suo cammino 
verso non si sa quale meta. Prendere coscienza di questa storia 
potrebbe essere la prima scoperta da parte degli studenti. 



Seguendo G.H. Nesselman (Nesselmann,1843) si è soliti 
distinguere tre fasi, tre periodi nella storia del linguaggio 
matematico. 

La prima fase viene chiamata “fase retorica” o “periodo 

retorico”. E’ la fase più antica, durata diversi millenni. Essa 
caratterizza, per esempio, la matematica dei Babilonesi, degli 
Egiziani, dei Greci del periodo aureo della matematica (Euclide, 
Archimede, Apollonio, Eratostene) e, più tardi, anche degli Arabi. 
Durante questa fase la matematica, problemi, soluzioni, regole è 
espressa quasi esclusivamente a parole. L’uso dei simboli è molto 
parco e quasi esclusivamente limitato ai numeri, scritti in modo 
diverso dal nostro. In classe si potrebbe presentare qualche 
problema, testo e soluzione, tratto da qualche tavoletta babilonese o 
dal papiro di Ahmes, e confrontarlo con il linguaggio moderno. Se 
ne trovano esempi sui libri di storia della matematica. Si veda, per 
esempio, (Giacardi e Roero 1979). 

La seconda fase viene chiamata “fase sincopata” o “periodo 

sincopato”. Convenzionalmente la si fa iniziare con Diofanto di 
Alessandria (intorno al terzo secolo dopo Cristo). Nella sua 
“Aritmetica”, tredici libri di problemi, ma ce ne sono pervenuti solo 
6, egli introduce alcuni simboli di carattere algebrico  come  ∆γ per 
il quadrato (∆ è l’iniziale maiuscola di dunamis=forza), Kγ per il 
cubo (K è l’iniziale maiuscola di kubos), e ς per indicare il”numero 
del problema”, cioè l’incognita (ς è l’ultima lettera di aritmòs cioè 
numero). Per questo si parla di “fase sincopata”. Essa è continuata 
fino al XVII secolo ed ogni autore introduceva simboli personali. 

Solo per fare un esempio. Luca Pacioli (1445-1514) usava “p” 
(plus) per l’addizione, “m” (minus) per la sottrazione, R (radix) per 
la radice quadrata, “co” (cosa) per l’incognita, “ce” (censo) per il 
quadrato e “cece” (censo-censo) per la quarta potenza. 



La terza fase viene chiamata “fase simbolica” o “periodo 

simbolico”. Convenzionalmente la si fa iniziare con F. Viète 
(1540-1603) che usa le vocali maiuscole per indicare l’incognita e 
le consonanti maiuscole per indicare i coefficienti. L’attuale 
simbolismo, però, è dovuto in gran parte a Cartesio (1596-1650). 
Egli usa, per esempio, le ultime lettere minuscole dell’alfabeto (x, 
y, z) per indicare le incognite,  e le altre lettere minuscole per 
indicare i coefficienti. Intanto, però, erano stati introdotti tutti i 
simboli attuali per le operazioni, come il + (verso la fine del secolo 
XV per opera del tedesco Widmann), il x (dall’inglese Oughtred 
nel 1631), e  per le relazioni come l’ = (nel 1557 ad opera 
dell’inglese Recorde) e il > (nel 1631 ad opera dell’inglese 
Harriot).  

La storia continua anche ora con l’introduzione di nuovi simboli 
per nuove operazioni, per nuove strutture, per nuovi concetti. 

Una seconda scoperta che si può fare in classe riguarda la storia 
dei simboli. Si tratta di far scoprire che i simboli hanno una storia, 
una vita, una evoluzione; che i simboli sono entrati in competizione 
e che, alla fine, uno ha prevalso perché aveva alle spalle una più 
lunga tradizione, oppure perché adottato da un grande matematico 
o, più banalmente, per ragioni economiche. Un libro 
informatissimo e fondamentale su questo argomento è il volume di 
F. Cajori (Cajori, 1974). Peano, nel suo Formulario Mathematico, 
ha delle note dedicate alla storia dei simboli. Si può anche 
utilmente consultare (A. Vellone 1994). Io  mi limito a ricordare 
due semplici esempi. 

Il primo riguarda i numeri decimali. 

Dalla quarta elementare in avanti si studiano i numeri decimali. Il 
grande “sponsor” dell’uso dei numeri decimali limitati fu Simon 
Stevin (1548-1620). Egli chiamava “inizio” la parte intera e la 
contrassegnava globalmente con il simbolo �. “Ciascuna decima 



parte dell’unità di inizio la chiamiamo Primo e il suo segno è �; e 
la decima parte dell’unità di primo lo chiamiamo Secondo, il suo 
segno è �”. Seguivano i Terzi, i Quarti, etc., ciascuno con il 
relativo simbolo. Ad esempio Stevin scriveva 27�8�4�7�il 
numero che per noi è scritto 27,847.    

La notazione era piuttosto complicata ed altri matematici cercarono 
di semplificarla; così, ad esempio, lo svizzero Joost Burgi (1552-
1632) scriveva 2414 ponendo uno zero sotto la cifra 1, al posto del 
nostro 241,4. 

Gli storici della matematica sono concordi nel ritenere che la 
consacrazione della virgola e del punto come separatore decimale 
sia da ascriversi a John Napier (1550-1617), più noto come Nepero, 
quello dei bastoncini per la moltiplicazione. 

Nell’opera “Rabdologiae, seu numerationis per virgulas, libri 

duo”, del 1617, egli usa indifferentemente il punto o la virgola, 
mentre nell’opera postuma “Mirifici logarithmorum canonis 

constructio” del 1619 adotta il punto decimale.  

Dopo Napier l’uso del punto o della virgola decimale si diffuse 
gradualmente, ma divenne esclusivo solo verso la fine del secolo 
XVIII con l’adozione del sistema metrico decimale. Una breve 
storia dei numeri decimali si trova in UMI (a cura di) (UMI, 2001). 

Il secondo riguarda le parentesi che impariamo ad utilizzare già 
dalla scuola elementare. 

Le parentesi, utilizzate già dal matematico fiammingo Albert 
Girard (1590-1633) nel 1629, vinsero definitivamente la loro 
battaglia con il concorrente “vinculum” ____, posto sopra o sotto 
gli elementi interessati, quando furono adottate dal grande Eulero 
(1707-1783). 



Una terza scoperta riguarda i rapporti fra linguaggio matematico e 
linguaggio comune. Il linguaggio matematico, se vuole mantenere 
un minimo di “umanità” e possedere un minimo di 
“comprensibilità” per la maggioranza delle persone non può fare a 
meno del linguaggio comune. Nel linguaggio matematico lo si usa 
abbondantemente, ma può essere richiesta un po’ di attenzione. 

Per esempio, può avvenire un “processo di estremizzazione 

semantica”. Si pensi alla parola “trasformazione”: nel linguaggio 
comune indica un cambiamento, una variazione. Non ci 
sogneremmo mai di parlare di “trasformazione” quando non 
cambia niente. 

In matematica si usa la parola “trasformazione” per esempio in 
geometria come nome generico per le isometrie, per le similitudini, 
ecc., ma si considera anche il caso estremo di trasformazioni che 
non cambiano niente: è la trasformazione identica o identità. Il 
motivo di questa scelta è che l’identità è necessaria per fare dei vari 
tipi di trasformazioni un gruppo in senso tecnico. 

Può avvenire un “cambiamento di categoria” (da aggettivo a 
sostantivo). Per esempio, nel linguaggio comune la parola 
“integrale” è un aggettivo: pane integrale, proprietà integrale, ecc. 
Anche nel linguaggio matematico si usa la parola “integrale”, ma 
come sostantivo: l’integrale della funzione  F(x). Allo stesso 
destino sono andate incontro, per esempio, anche le parole 
“derivata” e “ordinata”. 

Può avvenire un “processo di monosemia”: dei vari significati che 
una parola assume nel linguaggio comune, in matematica se ne 
sceglie uno. Si pensi alla parole “ordine”. 

Può avvenire un “processo di novità semantica” che consiste 
nell’assumere una parola del linguaggio comune e nel caricarla di 
un significato totalmente nuovo. E’ il caso, per esempio, delle 



parole che esprimono le strutture algebriche, come “gruppo”, 
“anello”, “campo”. 

Il discorso sul “Parlare” si potrebbe concludere in classe con un 
“Elogio del linguaggio simbolico” per 

• La sua economicità che permette di risparmiare un sacco di 
tempo e di parole passibili, magari, di diverse interpretazioni. 
Basterebbe, per esempio, scrivere, in simboli,  la proprietà 
distributiva della moltiplicazione rispetto alla addizione e farla 
tradurre con  parole del linguaggio comune. 

•  La sua universalità che lo rende comprensibile a tutti 
indipendentemente dalla lingua materna. E’ il vero esperanto 
della scienza. 

• La sua pluriconcretezza. Si pensi alla nozione di “gruppo”. 
     Un insieme G dotato di una operazione binaria interna *  è un 
gruppo se 
 - ∀a ∀b ∀c   ( a * b ) * c = a * ( b * c ) 
 - ∃ u: ∀a  a * u = u * a = a 
 - ∀a ∃ x: a * x = x * a = u 
 
Definizione certamente astratta, senza nessun riferimento a 
“oggetti” particolari né ad una operazione particolare. Proprio per 
questo, però, con questa struttura si riesce a descrivere ed a 
dominare una pluralità di situazioni diverse fra di loro per gli 
“oggetti” interessati (numeri di vario tipo: interi relativi, razionali, 
reali, complessi; trasformazioni geometriche: isometrie, 
similitudini, proiettività; classi di resti ecc.),  per l’operazione                
“ * ” (che può essere interpretata come addizione, moltiplicazione, 
composizione, ecc.), per la cardinalità (finita, numerabile, 
continua).  

 



• Talvolta anche per la sua stupenda bellezza. Si pensi, per 
esempio, a quella che viene generalmente considerata la più 
bella formula della matematica:  

e
iπ

 + 1 = 0 

nella quale entrano tutti i grandi protagonisti della matematica. Sarà 
una questione di gusti, ma non si può non rimanere meravigliati 
davanti alla potenza espressiva, alla semplicità assoluta, alla 
eleganza incredibile di questa formula. 

 

4 – DIMOSTRARE 

La dimostrazione matematica è stata una fatidica e gloriosa 
conquista della Grecia. Nelle matematiche pre-elleniche non si 
incontrano dimostrazioni che possono essere sviluppate all’interno 
di un sistema assiomatico. Sappiamo tutti che i primi a dare una 
sistemazione assiomatica alla matematica sono stati i Greci. Dire 
matematica dopo i Greci, affermava Dieudonné, è dire 
dimostrazione. Le dimostrazioni fanno parte dell’ “orgoglio 
matematico”. Tuttavia, nonostante l’esempio degli Elementi di 
Euclide, scorrendo la storia della matematica ci imbattiamo in 
esempi di “dimostrazioni” offerti da matematici di un certo 
spessore come Girolamo Cardano (1501-1576), Simon Stevin 
(1548-1620), Cristian von Wolf (1679-1754), che ora ci fanno 
sorridere (Ferrari, 2002). Lungo i secoli sono cambiati gli obiettivi 
assegnati alle dimostrazioni. Da questo punto di vista è illuminante 
l’articolo della (Barbin, 1994). I matematici, però, non vi hanno 
mai rinunciato perché solo una dimostrazione produce teoremi, 
genera certezze. La convinzione comune, però, era che una 
dimostrazione deve essere “umana”, cioè deve poter essere 
controllata, in un tempo ragionevole, con un procedimento 
manuale, con “carta e matita”. E’ stato Archimede a teorizzare che 



una condizione essenziale per l’accettazione di una dimostrazione 
deve essere l’esame e il riconoscimento da parte di esperti 
matematici: il controllo e la validazione sociale, come si dice oggi. 
Una ferita mortale a tale concezione è stata inferta nel 1976 da 
Kenneth Appel e Wolfang Haken con la dimostrazione del 
“teorema dei quattro colori” ottenuta con l’uso di tre calcolatori 
con un tempo macchina di circa 1200 ore. Fu vera dimostrazione? 
Se ne discute ancora. 
Negli ultimi decenni si è molto discusso sulle dimostrazioni 
matematiche. Mi limito ad un breve cenno. 
Nel 1993 John Horgan ( Morte della dimostrazione, in “Le 
Scienze”, n.304, dicembre) scriveva: “Per millenni, i matematici 
hanno commisurato i loro progressi a ciò che si può dedurre tramite 
la dimostrazione, cioè una successione di passaggi logici che da 
una serie di assiomi porta a una conclusione irrefutabile. Ebbene, i 
dubbi che travagliano il pensiero odierno hanno ormai contaminato 
anche la matematica. Può darsi che i matematici siano prima o poi 
costretti ad accettare ciò che già molti scienziati e filosofi hanno 
ammesso, cioè che le loro asserzioni sono, nella migliore delle 
ipotesi, vere solo provvisoriamente, finché non se ne dimostri la 
falsità”. 
Questo è una specie di “De profundis” della dimostrazione 
matematica intonato da Horgan dando “voce in modo meditato a 
sensazioni e opinioni diffuse sia nel campo scientifico sia in quello 
della scuola” (G. Lolli, Morte e risurrezione della dimostrazione, 
“Le Scienze”, n.345 maggio 1997). Lo stesso Lolli riconosce che: 
“La matematica produce dimostrazioni sempre più spericolate  e in 
chi deve dominarle, o insegnarle,  la confusione e il disagio sono 
forti; si è arrivati a proporre l’istituzionalizzazione di un nuovo tipo 
di matematica, esplicitamente senza dimostrazioni, ma consistente 
di congetture, esempi, allusioni”. L’articolo di Lolli, però, è stato 
anche il canto del “Resurrexit”. Di Lolli vorrei ricordare, anche per 
i suoi risvolti didattici, il volume “QED. Fenomenologia della 

dimostrazione”, Bollati Boringhieri, 2005. 



Queste discussioni sulle dimostrazioni si sono fatte sentire anche 
nell’insegnamento della matematica nelle scuole preuniversitarie. 
 
In Francia, per esempio, al dire di Josette Adda (Adda, 1988) la 
soluzione adottata è stata drastica: gli alunni non sanno fare le 
dimostrazioni? Sopprimiamole e accontentiamoci di definizioni 
informali e di teoremi “accettati” senza dimostrazioni (anche 
nell’insegnamento dell’analisi delle classi terminali a carattere 
scientifico). 
Per gli Stati Uniti cito dall’articolo di Lolli: “Istituzioni prestigiose 
con responsabilità nella didattica, come lo US National Research 
Council, sostengono che, grazie ai calcolatori, studenti che abbiano 
anche solo una minima capacità nelle tecniche fondamentali 
dell’algebra dovrebbero poter affrontare  corsi di calcolo 
appositamente concepiti, cioè senza dimostrazioni. La scuola 
secondaria non è il luogo per imparare a scrivere dimostrazioni 
matematiche rigorose e formali; per quello ci sono i corsi 
universitari avanzati.” 

E in Italia? Mi hanno sempre colpito due fatti. Il primo è questo: 
molte persone, anche di buona cultura, capaci di fare ragionamenti 
seri e corretti, davanti ad una dimostrazione matematica si 
mostrano completamente disarmate. Il secondo, ed è esperienza 
quotidiana dei docenti di matematica, è la enorme difficoltà degli 
studenti nell’esporre una dimostrazione: essi la imparano a 
memoria e la recitano sperando che l’insegnante non li 
interrompano altrimenti “tota scientia vadit” come quando la “carta 
cadit”. Certo le dimostrazioni matematiche presentano delle 
difficoltà. Per esempio, bisogna capire il ruolo che, in una 
dimostrazione, giocano i fatti matematici già noti ed accertati, siano 
essi assiomi o teoremi. Prima ancora bisogna prendere coscienza 
perché una certa affermazione debba  essere dimostrata. Soprattutto 
in geometria perché fare dimostrazioni, magari lunghe e noiose, 
quando la figura parla così chiaramente? 



Io sono convinto che noi docenti dovremmo fare delle serie 
riflessioni sulle dimostrazioni nel nostro insegnamento. Io, per 
esempio, diminuirei drasticamente il numero delle dimostrazioni in 
geometria, mentre  aumenterei quelle di aritmetica e di algebra. 
Dovremmo studiare un avvio “soft” alle dimostrazioni mostrando 
la “fallacia”, alle volte, dei nostri sensi (Benaglia 1997, Gario 
2010). Credo siano necessarie altre  riflessioni anche se, 
sinceramente, non so dirvi quali. 

Ad ogni modo ritengo inaccettabile eliminare le dimostrazioni dal 
nostro insegnamento sopratutto oggi con giovani abituati al flash 
che non lascia traccia, al “mordi e fuggi”. Le dimostrazioni sono 
uno strumento per abituare i giovani a riflettere, a pensare, a 
ragionale, a faticare. E, perché no?, anche a divertirsi, almeno entro 
certi limiti. A mò di esempio, propongo alcune situazioni nelle 
quali docenti e studenti possono, se non proprio divertirsi, provare 
delle soddisfazioni. 

Prima situazione: dimostrare per generalizzare. 

Siamo in aritmetica ed usiamo numeri facilmente dominabili. 
Prendiamo tre numeri consecutivi e facciamone il prodotto. 
Esempi: 1 x 2 x 3 = 6; 4 x 5 x 6 = 120; 2 x 3 x 4 = 24. In ciascuna 
terna prendiamo il numero centrale, ne facciamo il cubo e gli 
sottraiamo il numero stesso: otteniamo gli stessi risultati. Sarà un 
caso fortunato perché, per esempio, abbiamo preso numeri piccoli? 
Possiamo provare con altre terne di numeri consecutivi e scopriamo 
che vale la stessa “regola”. Possiamo concludere che vale sempre? 
Con le “prove” si rafforza l’idea, ma non possiamo raggiungere la 
certezza. La raggiungiamo, invece, generalizzando, cioè 
considerando i numeri: n, n+1, n+2 oppure, perché i calcoli sono 
più semplici, n-1, n, n+1. 

Seconda situazione: dimostrare per scoprire: l’infinità dei 

numeri primi. 



Nella conferenza tenuta al convegno dell’UMI a Padova nel 
1995, Prodi diceva: “Un'altra carenza che riscontravo [negli 
insegnanti] riguarda quella che chiamerei l'affettività 
matematica: (potrei anche usare il termine entusiasmo); voglio 
dire: il piacere di raccontare agli altri (in questo caso agli allievi) 
qualche fatto matematico molto bello, e tecnicamente 
semplicissimo. Per molti anni ho fatto un test alle matricole 
chiedendo, fra l'altro, se avevano mai sentito dire che esistono 
infiniti numeri primi: non si andava mai oltre il 5% di risposte 
affermative. È vero che il teorema di Euclide sull'infinità dei 
numeri primi non faceva parte del programma, ma è anche vero 
che per chi ha un po' di passione per la matematica è difficile 
resistere alla tentazione di raccontarlo a chi non lo sa.” 

 

Il mondo dei numeri primi è un mondo fantasioso, imprevedibile, 
misterioso. La loro distribuzione nella successione dei numeri 
naturali è quanto mai varia. Ci sono sequenze zeppe di numeri 
primi: fra 1 e 10 ce ne sono quattro e altrettanti fra 10 e 20; e ci 
sono sequenze lunghissime senza numeri primi: fra 1 000 000! + 2 
e 1 000 000! + 1 000 000 non ci sono numeri primi. Scorrendo il 
crivello di Eratostene o la tabella dei numeri primi riportata in tutti 
i testi di aritmetica delle scuole medie, è facile scoprire i “numeri 

primi gemelli”, cioè numeri primi che differiscono di 2, come 3 e 
5, 5 e 7, 11 e 13, 17 e 19. Quanti ce ne sono? I matematici, con il 
cuore dicono che sono infiniti, ma con la ragione devono 
confessare la loro ignoranza. Allo stesso modo è facile scoprire i 
“numeri primi trimelli” cioè terne di numeri primi che differiscono 
di 2. Si vede subito la terna: 3, 5, 7. Quanti ce ne sono? E’ facile 
dimostrare, ma non lo faccio, che c’è solo questa terna. E i numeri 
primi? Forse sono più del 5% gli studenti disposti a dire che sono 
infiniti, ma forse sono meno quelli che ne hanno visto la 
dimostrazione. Eppure essa risale ad Euclide. Un risultato 
profondo, sicuro in un mare di misteri, raggiunto con una 



dimostrazione semplice , elegante che ogni studente di prima 
superiore può capire e gustare. Eccola. 

Supponiamo che i numeri primi siano in numero finito e 
disponiamoli in ordine crescente. Per non far intervenire il sistema 
di numerazione chiamiamoli, come fa Euclide, A, B, C,…D. 
Con essi costruiamo un  nuovo numero: N = ( AxBxC…xD) + 1. 
Esso è certamente maggiore di tutti i numeri A, B, C, …D e, 
quindi, non fa parte della lista. 
Per N si possono verificare due casi 

1 - N è primo. La dimostrazione è conclusa perché N non fa parte 
della lista dei     numeri primi da cui siamo partiti. 

2 – N è composto. Allora deve essere divisibile per almeno un 
numero primo      della lista. Ma questo non può succedere perché 
dividendo N per qualunque numero della lista si ottiene 1 come 
resto. Quindi deve esistere un numero primo che divide N e non 
appartiene alla lista. E la dimostrazione è conclusa. Qui si vede il 
ruolo fondamentale giocato nella dimostrazione dal “teorema 
fondamentale dell’aritmetica”. 

Mirabil semplicità in lavoro così profondo, viene voglia di dire, 
parafrasando un poeta. Ed è l’impressione che molti hanno avuto 
provandone una soddisfazione estasiante. 

Prendo a prestito da W. Dunham ( Viaggio attraverso il genio, 
Zanichelli, 1992, pag. 90-91 ): “ Il ragionamento di Euclide è un 
vero classico, un autentico grande teorema ed è citato a volte come 
il più bell’esempio  di teorema matematico a un tempo semplice, 
elegante e profondo. Il matematico inglese Godfrey Hardy (1887-
1947), nel suo stupendo libro Apologia di un matematico, ha scritto 
che questa dimostrazione di Euclide “conserva la freschezza e 
l’importanza di quando è stata scoperta: duemila anni non vi hanno 
lasciato una ruga”. 



Terza situazione: dimostrare per vedere le cose in una luce 

nuova: il teorema di Pitagora ed il suo inverso. 

Il triangolo rettangolo è una figura definita in termini di lati e di un 
angolo (quello retto). Di esso, come degli altri triangoli, sappiamo 
molte cose che ci appaiono intuitivamente evidenti come: 

• un lato è minore della somma degli altri due; 
• a lato maggiore è opposto angolo maggiore; 
• ad angolo maggiore è opposto lato maggiore. 

Niente lascia presagire, dal punto di vista intuitivo, anche per il 
triangolo rettangolo, che vi sia un rapporto stretto fra i quadrati 
costruiti sui lati. 

Il teorema di Pitagora, la cui dimostrazione merita di essere fatta 
anche perché accessibile, fissa in modo inequivocabile la famosa e 
proverbiale uguaglianza a tutti nota svelando un fatto strano e 
inaspettato.  

Se consideriamo anche l’inverso del teorema di Pitagora, 
scopriamo che un triangolo rettangolo può essere caratterizzato 
completamente in base ai quadrati costruiti sui suoi lati. Sul 
teorema di Pitagora mi sembra condivisibile quanto scrive Trudeau 
(La rivoluzione non euclidea, Bollati Boringhieri, 1991, pag. 116): 
“ Il teorema di Pitagora non manca mai di stupirmi profondamente: 
sebbene i manufatti umani siano pieni di angoli retti, io concepisco 
questi ultimi come entità originariamente naturali, simili al fulmine 
o all’Orsa Maggiore: in piedi in mezzo a un campo formo un 
angolo retto con il suolo; se inizialmente sono rivolto a est, devo 
ruotare di un angolo retto per avere di fronte il sud; una ghianda 
che cade segue un percorso ad angolo retto con l’orizzonte. D’altra 
parte, la formula 
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non evoca alcun ricordo profondo: i numeri non sono parte della 
natura, e anche se lo fossero sarebbe improbabile imbattersi in tre 
di essi che soddisfano tale relazione. L’equazione, così astratta e 
precisa, ci è estranea, e non riesco a immaginare come possa aver a 
che fare con qualcosa di quotidiano come gli angoli retti: per 
questo, quando, caduto il velo dell’abitudine come a volte accade, 
considero il teorema di Pitagora come se lo studiassi per la prima 
volta, ne rimango sbalordito.” 

Quarta situazione: dimostrare per giocare (d’anticipo): I 
quadrati magici. 

Tutti conoscono il quadrato magico classico di ordine tre: è un 
quadrato 3x3, formato da 9 caselle nelle quali bisogna collocare i 
numeri 1, 2, 3,…,9 in modo che la somma nelle righe, nelle 
colonne e nelle diagonali sia sempre 15. In genere dopo qualche 
tentativo si trova la soluzione. Questo è un quadrato magico 
abbastanza raffinato. Si può proporre di giocare con quadrati 
magici più “popolari”. Per esempio, usando i numeri 0 e 1 costruire 
un quadrato magico di costante magica K = 1. 

Tutti partono lancia in resta, questa è la mia esperienza con 
insegnanti soprattutto elementari, e dopo qualche minuto 
presentano una soluzione regolarmente errata. Di solito c’è una 
diagonale che non funziona. Dopo vari tentativi andati a vuoto, 
incomincia a insinuarsi l’idea che non è possibile costruire tale 
quadrato magico. Perché? Forse sono troppo pochi i numeri a 
disposizione. Si può provare con una costante magica K = 5, 7, 8, 
10. La situazione non migliora. 

Conoscendo un semplice risultato, garantito da una altrettanto 
semplice dimostrazione, il mistero si svela. 

Consideriamo il quadrato magico di ordine 3 più generale 

                                                             



A    B     C  

D    E     F  

G    H    I 

con costante magica K. 

Si ha: A + E + I = K 

         C + E + G= K 

         B + E + H = K 

Da cui: ( A + B + C ) + ( G + H + I ) + 3E = 3K  cioè 

                  K             +        K          + 3E = 3K   e quindi 

                                                             3E = K. 

Scoperta: K deve essere un multiplo di 3 e l’elemento centrale  E  è 
un terzo di K. Ecco perché non funzionano i quadrati magici prima 
proposti. Con questo entriamo nel campo dell’ultimo verbo. 

 

5 – GIOCARE 

Già ho parlato dei nostri alleati nei “divertimenti matematici” e non 
voglio ripetermi. Mi limito a proporre un gioco interessante di 
carattere geometrico. 

Un professor di matematica, ormai in pensione, volle mettere le sue 
conoscenze matematiche a disposizione del capo giardiniere del 
giardino di Boboli per creare delle composizioni artistiche. 



Creare delle aiole circolari o a forma ellittica era un gioco da 
ragazzi e tutti erano capaci di farlo. Le coniche, però, erano un 
mondo molto ricco. In particolare gli frullava nella mente un 
teorema di Pappo sull’esagono inscritto in una conica. Perché non 
sfruttarlo per creare una composizione che destasse l’ammirazione 
dei visitatori ed il desiderio di qualche approfondimento nello 
studio della matematica? Il problema non era semplice, ma alla fine 
venne l’idea luminosa: piantare 9 rose su 10 rette, mettendo 3 rose 
su ogni retta facendo in modo che 2 sole rette fossero assi di 
simmetria di tutta la composizione. Fantasia e matematica fecero il 
miracolo. Proviamo anche noi? 

La prima idea che tutti hanno è di disegnare una composizione 
come questa: 

 

 

Qui c’è abbondanza di rette di simmetria (sono 4), ma le rette che si 
possono tracciare sono solo 8. 

 

Proviamo a ragionarci sopra. 

• Ci devono essere due sole rette di simmetria. Esse, quindi, sono 
perpendicolari. Allora tracciamo le rette 1  e  2. 

• Nel punto di intersezione, O, mettiamo una rosa. 



• Sulla retta 1 dobbiamo piazzare altre due rose che devono 
essere simmetriche rispetto alla retta 2. Nascono così le rose C  
e  D. 

• In modo analogo sulla retta 2 nascono le rose A  e  B. 
• A questo punto che cosa offre il convento? Offre la retta CB 

(retta 5) ( per due punti passa una ed una sola retta) e la sua 
simmetrica rispetto alla retta 1 cioè la retta CA (retta 6). 
Ricordiamo che C è un punto unito nella simmetria di asse 1 
perché appartiene all’asse. 

• Su ciascuna di queste due rette, la 5 e la 6, dobbiamo piantare 
un’altra rosa. Basta piantarle in modo che siano allineate con D. 
Nascono le rose E ed  F e con esse la retta  EDF, cioè la retta 3. 

• Siamo a buon punto: abbiamo piantato 7 rose su 5 rette, ma la 
strada è ormai tracciata. Nascono, infatti, le rette,  simmetriche 
rispetto alla 1, DB  e  DA. Su di esse piazziamo due rose 
allineate con C e simmetriche rispetto alla retta 1. Nascono così 
le rette 7  ed  8 e la retta 4. 

• A questo punto abbiamo esaurito le 9 rose, ma le rette disegnate 
sono 8 e non 10. Dobbiamo trovare le due mancanti sfruttando 
le rose già piantate. 

• Non è difficile: sono le rette IOF e GOE. 
• Abbiamo finito. 
 

 



 

6 – CONCLUSIONE 

Non so se vi siete divertiti durante questa lunga, troppo lunga, 
relazione. Se non vi siete divertiti, il difetto è nel manico, cioè nel 
relatore e ne chiedo venia. Però credetemi: anche studiando 
matematica ci si può divertire. Altrimenti perché i matematici 
avrebbero inventato dei giochi? Non potremmo nel nostro 
insegnamento adottare il motto: “Giocando s’impara”? Forse non 
potremo essere sempre fedeli, ma sarebbe un modo per non 
prendere troppo sul serio la matematica, per non trasformarla in 
dramma, in sorgente di paura, in una realtà da cui cercare di 
liberarsi il più presto possibile. 
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